Quantitative neuropeptide analysis by mass spectrometry: advancing methodologies for biological discovery

Abstract

Neuropeptides are critical endogenous signaling molecules involved in a wide range of biological processes, including neurotransmission, hormonal regulation, immune responses, and stress management. Despite their importance, the field of neuropeptide research has been historically hampered by significant technical challenges. These include their low abundance in biological systems, diverse and complex post-translational modifications, dynamic expression patterns, and susceptibility to degradation. As such, traditional proteomics approaches often fall short of accurately characterizing neuropeptides, underscoring the need for specialized methodologies to unlock their biological and translational potential. This review evaluates state-of-the-art quantitative mass spectrometry (MS)-based peptidomics, emphasizing their impact on neuropeptide analysis. We highlight how strategies in label-free and label-based quantitation, tandem MS acquisition, and mass spectrometry imaging provide unprecedented sensitivity and throughput for capturing the landscape of neuropeptides and their modifications. Importantly, the review bridges technological innovation with practical applications, highlighting how these approaches have been utilized to uncover novel neuropeptides and elucidate their roles in systems biology and disease pathways.

Graphical abstract: Quantitative neuropeptide analysis by mass spectrometry: advancing methodologies for biological discovery

Article information

Article type
Review Article
Submitted
07 Apr 2025
Accepted
29 May 2025
First published
12 Jun 2025
This article is Open Access
Creative Commons BY-NC license

RSC Chem. Biol., 2025, Advance Article

Quantitative neuropeptide analysis by mass spectrometry: advancing methodologies for biological discovery

A. E. Ibarra, W. Wu, H. Zhang and L. Li, RSC Chem. Biol., 2025, Advance Article , DOI: 10.1039/D5CB00082C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements