Issue 5, 2025

Real-time bioluminescence imaging of nitroreductase in breast cancer bone metastasis

Abstract

Bone metastasis is a leading cause of mortality in breast cancer patients. Monitoring biomarkers for bone metastasis in breast cancer is crucial for the development of effective interventional treatments. Despite being a highly vascularized tissue, the bone presents a particularly hypoxic environment. Tumor hypoxia is closely linked to increased levels of various reductases, including nitroreductase (NTR). Currently, there are few probes available to detect NTR levels in breast cancer bone metastases. Although bioluminescent imaging is promising due to its specificity and high signal-to-noise ratio, many probes face challenges such as short emission wavelengths, reliance on complex conditions like external adenosine triphosphate, or lack of tissue specificity. In this study, through “caging” the luciferase substrate with an NTR-responsive aromatic nitro recognition group, we developed a highly sensitive and selective NTR-sensitive bioluminescent probe. The resulting probe effectively detects NTR in breast cancer cells and enables real-time monitoring of NTR in a mouse model of breast cancer bone metastasis. Additionally, it can differentiate between primary and bone tumors, and allow continuous monitoring of NTR levels, thus providing valuable insights into bone tumor progression. This work provides a powerful tool for further understanding the biological functions of NTR in breast cancer bone metastasis.

Graphical abstract: Real-time bioluminescence imaging of nitroreductase in breast cancer bone metastasis

Supplementary files

Article information

Article type
Paper
Submitted
13 Dec 2024
Accepted
13 Mar 2025
First published
14 Mar 2025
This article is Open Access
Creative Commons BY-NC license

RSC Chem. Biol., 2025,6, 754-760

Real-time bioluminescence imaging of nitroreductase in breast cancer bone metastasis

K. Lu, M. Zhang, Z. Tian and H. Xiao, RSC Chem. Biol., 2025, 6, 754 DOI: 10.1039/D4CB00310A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements