Issue 2, 2025

Raman signatures of type A and B influenza viruses: molecular origin of the “catch and kill” inactivation mechanism mediated by micrometric silicon nitride powder

Abstract

A multiomic study of the structural characteristics of type A and B influenza viruses by means of highly spectrally resolved Raman spectroscopy is presented. Three virus strains, A H1N1, A H3N2, and B98, were selected because of their known structural variety and because they have co-circulated with variable relative prevalence within the human population since the re-emergence of the H1N1 subtype in 1977. Raman signatures of protein side chains tyrosine, tryptophan, and histidine revealed unequivocal and consistent differences for pH characteristics at the virion surface, while different conformations of two C–S bond configurations in gauche and trans methionine rotamers provided distinct low-wavenumber fingerprints for different virus lineages/subtypes. Short-term exposure to a few percent fraction of silicon nitride (Si3N4) micrometric powder in an aqueous environment completely inactivated the influenza virions, independent of lineage/subtype dependent characteristics. The molecular-scale details of the inactivation process were studied by Raman spectroscopy and interpreted in terms of a “catch and kill” mechanism, in which the hydrolyzing ceramic surface first attracts virions with high efficiency through electrochemical interactions (mimicking cellular sialic acid) and then “poisons” the viruses by local hydrolytic elution of ammonia and nitrogen radicals. The latter event causes severe damage to the virions’ structures, including structural degradation of RNA purines, rotameric scrambling of methionine residues, formation of sulfhydryl and ionized carboxyl groups, and deprotonation/torsional deformation of tyrosine, tryptophan, and histidine residues. This study confirmed the antiviral effectiveness of Si3N4 powder, which is safe to the human body and simply activated by water molecules. Raman spectroscopy was confirmed as a powerful tool in molecular virology, complementary to genomics and unique in providing direct information on virus structures at the molecular scale.

Graphical abstract: Raman signatures of type A and B influenza viruses: molecular origin of the “catch and kill” inactivation mechanism mediated by micrometric silicon nitride powder

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
02 Oct 2024
Accepted
06 Jan 2025
First published
22 Jan 2025
This article is Open Access
Creative Commons BY-NC license

RSC Chem. Biol., 2025,6, 182-208

Raman signatures of type A and B influenza viruses: molecular origin of the “catch and kill” inactivation mechanism mediated by micrometric silicon nitride powder

G. Pezzotti, Y. Yasukochi, E. Ohgitani, M. Nakashio, M. Shin-Ya, T. Adachi, T. Yamamoto, S. Ikegami, W. Zhu, K. Higasa, K. Okuma and O. Mazda, RSC Chem. Biol., 2025, 6, 182 DOI: 10.1039/D4CB00237G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements