Advances and therapeutic potential of ferritin-involved drug delivery systems for ferroptosis-targeted therapy
Abstract
Ferroptosis, a regulated cell death pathway characterized by iron dysregulation and lipid peroxide accumulation, has emerged as a pivotal target in the treatment of cancer and other diseases. As a natural iron storage protein in organisms, ferritin (Fn) is involved in regulating intracellular iron homeostasis through processes such as iron transport, storage, and ferritinophagy, which in turn significantly influence the Fenton reaction, making it closely related to the occurrence of ferroptosis. Additionally, due to the unique cavity structure of ferritin nanocages, their excellent biocompatibility and their specific binding ability for the highly expressed transferrin receptor 1 (TfR1) on the surface of tumor cells, ferritin nanocages have been extensively explored in the design and development of drug delivery systems (DDS). Given the above background, this paper reviews the novel mechanisms of ferroptosis and the research advancements in the related diseases and drugs. It further explores the structure and application of ferritin (including DDS design and vaccine development) and emphasizes the construction of DDSs regulating ferroptosis through utilizing ferritin nanocages as carriers or by targeting the disruption of endogenous ferritin, with the expectation of providing a reference for the development of safer and more effective nanoformulations.

Please wait while we load your content...