Cationic PPC liposomes with dual targeting modules for enhanced liver fibrosis therapy via the extracellular matrix barrier

Abstract

Activation of hepatic stellate cells (HSCs) is a key driver of fibrogenesis, while perisinusoidal collagen I deposition establishes biophysical barriers that impede therapeutic delivery. To address this challenge, we developed a cationic liposome nanomicelle system (LIP/RSC) based on a polyenyl phosphatidylcholine (PPC) matrix, functionalized with collagenase I and dual silybin B-retinoic acid (silybin-RA) moieties. In this design, retinoic acid (RA) was covalently conjugated to two distinct components: (i) silybin B to form a targeted therapeutic complex (silybin-RA), and (ii) DSPE-PEG2000-NH2 to construct a long-circulating carrier (RA-DSPE-PEG2000). The resulting system embodies an innovative HSC-ECM dual-targeting strategy through the integration of dual RA modification technology—combining silybin B-targeting modification with DSPE-PEG2000 long-circulation modification—and spatiotemporally controlled silybin B release. The LIP/RSC system exhibited cell-selective drug release profiles, with a 4-fold greater release of silybin B in CCl4-activated HSCs (LX-2-CCl4) than in hepatocytes (WRL68), accompanied by collagen normalization. The system conferred dual pharmacodynamics: slow-release kinetics-prolonged circulation time (≥72 h) while enabling receptor-mediated HSC targeting and collagenase I activity-enhanced fibrotic barrier penetration, resulting in a 2.1-fold increase in the silybin B release efficiency in 8–72 h post-injection and an 85% reduction in the total collagen content in fibrotic murine models. This study validates LIP/RSC as an integrated nanoplatform that synergizes matrix remodeling with targeted drug delivery, thereby demonstrating enhanced therapeutic efficacy against hepatic fibrosis.

Graphical abstract: Cationic PPC liposomes with dual targeting modules for enhanced liver fibrosis therapy via the extracellular matrix barrier

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
20 Aug 2025
Accepted
13 Oct 2025
First published
20 Oct 2025
This article is Open Access
Creative Commons BY-NC license

Biomater. Sci., 2025, Advance Article

Cationic PPC liposomes with dual targeting modules for enhanced liver fibrosis therapy via the extracellular matrix barrier

Y. Li, Y. Zhou, L. Wu, Q. Gao and W. Wang, Biomater. Sci., 2025, Advance Article , DOI: 10.1039/D5BM01262G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements