Issue 18, 2025

Development of hair follicle spheroids with growth factor transfection and various cell combinations

Abstract

As the number of hair loss patients increases, research conducted on hair follicles and hair has recently become more active. However, most current hair follicle research models are limited in their ability to reproduce several key functions of the hair follicle microenvironment. To solve this problem, hair growth genes were injected into hair follicle cells, and long-term culture was performed for up to 90 days. DPCs (dermal papilla cells), KCs (keratinocytes), HUVECs (human umbilical vein endothelial cells) or HDMECs (human dermal microvascular endothelial cells), and FBs (fibroblasts) injected with hair follicle growth factors LEF1 and Wnt1 were mixed to produce spheroids, and the growth factor expression and growth behavior according to the type of cell and the presence or absence of transfection according to the culture period were analyzed using SEM, H&E staining, and IF imaging. As the culture period increased, the size of the spheroids increased, and the number decreased due to the association between spheroids; long fibers that appeared to be hair expression were observed. We also compared the differences between HUVECs and HDMECs, which have different phenotypes of vascular cells. In spheroids that did not contain FBs, the expression of HUVECs was more promoted, whereas in spheroids that contained FBs, the expression of HDMECs tended to be more promoted. These results are expected to contribute to dermatology and new drug development for the prevention of intractable skin diseases and hair loss using skin models with a microbiome environment in the future.

Graphical abstract: Development of hair follicle spheroids with growth factor transfection and various cell combinations

Article information

Article type
Paper
Submitted
01 Jul 2025
Accepted
31 Jul 2025
First published
31 Jul 2025

Biomater. Sci., 2025,13, 5184-5201

Development of hair follicle spheroids with growth factor transfection and various cell combinations

H. Nam, S. Jeong and G. Y. Sung, Biomater. Sci., 2025, 13, 5184 DOI: 10.1039/D5BM00998G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements