Ultrasound-activated inorganic nanomaterials to generate ROS for antibacterial applications

Abstract

Given the global overuse and misuse of antibiotics, the problem of antibiotic resistance has become increasingly severe, necessitating the urgent development of innovative therapeutic strategies to address bacterial infections. In recent years, nanomaterial-mediated sonodynamic therapy (SDT) has emerged as a promising alternative treatment. This strategy works by generating reactive oxygen species (ROS) to inhibit or kill bacteria, thereby avoiding the risk of antibiotic resistance. This review explores the various mechanisms by which ROS exert antibacterial effects and examines the different methods of generating ROS. It provides an overview of the diverse nanomaterials applied in SDT in recent years, including two-dimensional materials, metal–organic frameworks (MOFs), heterojunctions, and surface-modified bulk materials. Additionally, it discusses other types of nanomaterials such as metal oxides and piezoelectric materials, while also highlighting their specific therapeutic applications in treating infections like skin infections and osteomyelitis. At the conclusion of the review, the development of nanomaterial-mediated SDT is discussed in terms of both its potential and challenges. The article offers valuable theoretical insights and practical references for the preparation of the nanomaterials required for this antibiotic-free therapeutic approach, and proposes new directions for future research aimed at addressing the growing issue of antibiotic resistance.

Graphical abstract: Ultrasound-activated inorganic nanomaterials to generate ROS for antibacterial applications

Article information

Article type
Review Article
Submitted
23 Jan 2025
Accepted
09 Apr 2025
First published
10 Apr 2025
This article is Open Access
Creative Commons BY-NC license

Biomater. Sci., 2025, Advance Article

Ultrasound-activated inorganic nanomaterials to generate ROS for antibacterial applications

G. Zheng, Z. Tang and F. Peng, Biomater. Sci., 2025, Advance Article , DOI: 10.1039/D5BM00121H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements