Electrical hydrogel: electrophysiological-based strategy for wound healing
Abstract
Wound healing remains a significant challenge in clinical practice, driving ongoing exploration of innovative therapeutic approaches. In recent years, electrophysiological-based wound healing strategies have gained considerable attention. Specifically, electrical hydrogels combine the synergistic effects of electrical stimulation and hydrogel properties, offering a range of functional benefits for wound healing, including antibacterial activity, real-time wound monitoring, controlled drug release, and electrical treatment. Despite significant progress made in electrical hydrogel research for wound healing, there is a lack of comprehensive, systematic reviews summarizing this field. In this review, we survey the latest advancements in electrical hydrogel technology. After analyzing the mechanisms of electrical stimulation in promoting wound healing, we establish a novel classification framework for electrical hydrogels based on their operational principles. The review further provides an in-depth evaluation of the therapeutic efficacy of these hydrogels in various types of wounds. Finally, we propose future directions and challenges for the development of electrical hydrogels for wound healing.
- This article is part of the themed collection: Biomaterials Science Emerging Investigator Series