Development of a natural product-based selective fluorescent sensor for Cu2+ and DNA/protein: insights from docking, DFT, cellular imaging and anticancer activity†
Abstract
The natural product seselin (SS), was synthesized and characterized spectroscopically for the selective detection of Cu2+ and biomolecules such as ct-DNA and BSA. The probe exhibits strong bluish emission in a MeOH–H2O (7 : 3, v/v) HEPES buffer solution (pH 7.4) at 453 nm. Upon exposure to Cu2+, the SS solution shows a selective fluorescence ‘turn-off’ with a binding constant of 2.13 × 105 M−1 and a detection limit of 3.48 × 10−8 M. The HOMO–LUMO energy gap of the probe SS decreases from ΔE = 7.97 eV to ΔE = 7.77 eV upon binding with Cu2+, indicating enhanced stability due to ligand–metal complex formation. Significantly, the ligand SS exhibits fluorescence enhancement in the presence of ct-DNA and BSA, resulting in a visible fluorescence change from colorless to blue, with binding constants of 4.8 × 104 M−1 and 4.7 × 104 M−1, respectively. The binding interactions of SS with biomacromolecules have been explored through molecular docking studies, revealing that the probe can serve as a promising anti-cancer and anti-viral agent. Furthermore, the probe SS demonstrates potent anticancer activity in treatments involving MCF-7 and HLC cells. Additionally, the probe SS is capable of detecting intracellular Cu2+ in live MCF-7 cell lines.