Issue 16, 2025

Raspberry-derived carbon dots for specific detection of intracellular copper ions

Abstract

The detection of intracellular copper ions is crucial for advancing biomedical research and enhancing disease diagnosis. In this study, blue emissive carbon dots (B-CDs) were successfully synthesized using raspberry as the carbon source through a simple hydrothermal method. Characterization techniques combined with theoretical calculations confirmed that the fundamental structural unit of B-CDs is a twelve-membered aromatic ring rich in oxygen and nitrogen functional groups. The B-CDs exhibited high selectivity for Cu2+, showing a strong linear response in the concentration range of 0 to 150 μM, with a detection limit of 0.39 μM. Zeta potential and hydrodynamic size measurements indicated that the B-CDs interact with Cu2+via electrostatic forces. Further studies revealed that the fluorescence quenching of B-CDs in the presence of Cu2+ is primarily due to a dynamic quenching process. Moreover, B-CDs were successfully applied to detect intracellular Cu2+. These findings not only show significant potential of B-CDs in fluorescence sensing but also provide valuable insights for the design of efficient carbon-based sensors.

Graphical abstract: Raspberry-derived carbon dots for specific detection of intracellular copper ions

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
10 Feb 2025
Accepted
25 Mar 2025
First published
07 Apr 2025

Anal. Methods, 2025,17, 3239-3248

Raspberry-derived carbon dots for specific detection of intracellular copper ions

Y. Xu, Y. Liu, L. Feng, X. Sun, M. Wang, Y. Xia, L. Yang and J. Yuwang, Anal. Methods, 2025, 17, 3239 DOI: 10.1039/D5AY00225G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements