Issue 14, 2025

Rapid quantification of pullulan in fermentation broth using UV-visible spectroscopy and partial least squares regression

Abstract

Quantification of exopolysaccharide (EPS) production in fermentation broth requires solvent precipitation of the polymer, followed by acid or enzymatic hydrolysis, and colorimetric or chromatographic analysis. This lengthy multistep sample preparation and analysis is a major bottleneck in bioprocess monitoring. The development of a nondestructive analytical method requiring minimal sample preparation is warranted. In this study, partial least squares (PLS) regression models were developed to quantify pullulan in cell-free supernatant (PCS) and precipitated pullulan redissolved in distilled water (PDW) from spectral data (204–400 nm). Genetic algorithm, particle swarm optimization, competitive adaptive reweighted sampling, and adaptive bottom-up space exploration strategies were employed to select optimal spectral regions. The full-spectrum model on the PCS (5 latent variables, RMSECV: 0.020 g l−1, RCV2: 0.997) outperformed the PDW (3 latent variables, RCV2: 0.990). Adaptive bottom-up space exploration achieved the lowest RMSECV (0.009 g l−1 for the PCS, 0.027 g l−1 for the PDW), retaining just 16 and 21 spectral variables, respectively. The residual predictive deviation (RPD) for all PLS model variants remains satisfactory (>6.559). The method's limit of detection (0.021 g l−1) was suitable for quantifying pullulan in fermentation broth. The proposed method can be extended to other structurally similar biopolymers where PLS-based soft sensor integration would enable real-time monitoring and bioprocess control.

Graphical abstract: Rapid quantification of pullulan in fermentation broth using UV-visible spectroscopy and partial least squares regression

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
06 Jan 2025
Accepted
08 Mar 2025
First published
10 Mar 2025

Anal. Methods, 2025,17, 2841-2849

Rapid quantification of pullulan in fermentation broth using UV-visible spectroscopy and partial least squares regression

N. Sahu, B. Mahanty and D. Haldar, Anal. Methods, 2025, 17, 2841 DOI: 10.1039/D5AY00034C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements