Issue 17, 2025

Uncovering gunshot residue flow and deposition mechanisms using novel visualization methods, real-time atmospheric particle sampling, and spectrochemical techniques

Abstract

Gunshot residue (GSR) consists of inorganic and organic components released during firearm discharge. Understanding the generation, transport, and settlement of these residues is essential to assess exposure risks and answer questions of forensic interest. Since GSR is prone to depositing in the vicinity of a firing event, its presence on a person of interest is meaningful to evaluate hypotheses about who discharged a firearm or if GSR was acquired by alternative means such as indirect transfer, being a bystander, or passing through the area shortly thereafter. However, the complexity of GSR production and variable dispersion makes its interpretation challenging. This study employs a novel multi-sensor approach to enhance the current understanding of GSR deposition, transference, and persistence. First, a particle counting/sizing system and inexpensive custom-made atmospheric samplers measure the population of airborne particles before, during, and after the firearm discharge. Second, high-speed videography and laser sheet scattering reveals visual and qualitative information about the flow of GSR under various experimental conditions. Finally, SEM-EDS and LC-MS/MS permit the confirmation of the elemental and chemical makeup of residues. This study estimates (a) how IGSR/OGSR are produced during a firing event using various firearms and ammunition, (b) how long it takes to settle on surfaces located at various distances from the firing location, and (c) direct and indirect deposition in indoor, semi-enclosed, and outdoor environments. The combination of these analytical tools provides breakthrough knowledge in forensics and other disciplines where airborne exposure is central, such as environmental sampling and indoor air quality.

Graphical abstract: Uncovering gunshot residue flow and deposition mechanisms using novel visualization methods, real-time atmospheric particle sampling, and spectrochemical techniques

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
20 Dec 2024
Accepted
31 Mar 2025
First published
07 Apr 2025
This article is Open Access
Creative Commons BY-NC license

Anal. Methods, 2025,17, 3415-3435

Uncovering gunshot residue flow and deposition mechanisms using novel visualization methods, real-time atmospheric particle sampling, and spectrochemical techniques

T. D. Ledergerber, M. Staymates, K. A. Dalzell, L. E. Arroyo, R. Jefferys and T. Trejos, Anal. Methods, 2025, 17, 3415 DOI: 10.1039/D4AY02283A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements