A polyaniline-enhanced quartz crystal microbalance sensor for room-temperature camphor detection

Abstract

A method to detect camphor gas is considered indispensable in the pharmaceutical industry. Unfortunately, the available sensors to detect the presence of camphor in the air are very limited and still on a laboratory scale, such as using chromatography-mass spectroscopy (GC-MS). The research's main focus is to obtain a portable sensing system with excellent sensitivity and selectivity. This study explored polyaniline (PANi) concentrations cast over PVAc nanofiber as a matrix to detect camphor gas using a quartz crystal microbalance (QCM) system to measure camphor exposure. Scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) were used to analyze the morphology and chemical composition of the fabricated active layer (i.e., nanofiber with PANi thin film). Increasing the PANi concentration provides more PANi on the sensor surface, thus amassing the active groups to interact with camphor gas molecules. It shows that a sensor with a 0.08% PANi thin film (Nano-PANi8) has a sensitivity of 2.594 Hz ppm−1, much greater than the sensor without PANi, which is only 0.305 Hz ppm−1. In addition, the sensor also has good repeatability and rapid response and recovery time of 47 s and 133 s, respectively. Compared to other gaseous compounds, the sensor also has excellent selectivity for camphor and robust long-term stability over three weeks of testing. The produced QCM sensor employing PANi thin film can give a camphor sensor superior performance, including excellent sensitivity, selectivity, and long-term stability. Furthermore, the use of QCM as a base sensor also makes the fabricated sensor portable.

Graphical abstract: A polyaniline-enhanced quartz crystal microbalance sensor for room-temperature camphor detection

Article information

Article type
Paper
Submitted
13 Oct 2024
Accepted
08 Dec 2024
First published
18 Dec 2024

Anal. Methods, 2025, Advance Article

A polyaniline-enhanced quartz crystal microbalance sensor for room-temperature camphor detection

R. Aflaha, M. R. Dzaki, L. Katriani, A. H. As'ari, C. N. Maharani, A. Kuncaka, T. A. Natsir, A. Rianjanu, R. Gupta, K. Triyana and R. Roto, Anal. Methods, 2025, Advance Article , DOI: 10.1039/D4AY01859A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements