Detection of carbapenemase-mediated antimicrobial resistance using surface-enhanced Raman scattering
Abstract
Antimicrobial resistance (AMR) poses a significant global health threat, necessitating rapid and precise detection methods. One widespread mechanism of AMR involves bacterial production of β-lactamase enzymes which render β-lactam antibiotics ineffective. The ability of β-lactamases with carbapenemase activity to degrade carbapenems, β-lactams used as antibiotics of last resort, is of particular concern. Carbapenemase-producing organisms (CPOs) cause infections with high mortality rates, hence, their timely detection is of utmost importance. Here, we applied surface-enhanced Raman scattering (SERS) to the detection of carbapenemase activity, where our data reveal that enzyme-catalyzed carbapenem hydrolysis results in distinct spectral fingerprint changes. We capitalize on this finding by illustrating an experimental methodology implementing SERS that permits the detection of CPOs.

Please wait while we load your content...