Detection of CH4 and SF6 in small volumes with infrared photoacoustic spectroscopy: A comparison with direct absorption spectroscopy

Abstract

Infrared (IR) spectroscopy has been applied to monitor gases in various circumstances; however, the IR spectral technique has limitations in detecting small volumes or trace amounts of gas. To evaluate this issue, we deliberately measured the IR spectra of methane and sulfur hexafluoride using the photoacoustic spectroscopic (PAS) technique for gaseous volumes of 1 mL or less. For comparison, the IR spectra of these gases were also determined by the direct absorption spectroscopy (DAS) method for the same quantities. As results, we found that the IR-PAS technique can compete with DAS with advantages including better baseline, scan time saving, and less distortion from the background for the same quantities of small gaseous samples. The calibrations of the intensity vs. absolute amount of gas and the optical path length of the cell were engaged in this work; the results show the relationships are linear, conforming to the successful quantitative analysis for small volumes or minute quantities of gas with the IR-PAS technique. In addition, the IR-PAS spectra of the gases were investigated with various construction materials of sample cells. In this manner, our investigation may further motivate the development of a better means or scheme in the IR-PAS technique for monitoring minute amounts of gas in the future.

Graphical abstract: Detection of CH4 and SF6 in small volumes with infrared photoacoustic spectroscopy: A comparison with direct absorption spectroscopy

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
22 Jun 2025
Accepted
15 Aug 2025
First published
12 Sep 2025
This article is Open Access
Creative Commons BY-NC license

Analyst, 2025, Advance Article

Detection of CH4 and SF6 in small volumes with infrared photoacoustic spectroscopy: A comparison with direct absorption spectroscopy

T. Tseng, C. Yang, H. Lu, M. Ho and B. Cheng, Analyst, 2025, Advance Article , DOI: 10.1039/D5AN00667H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements