Issue 19, 2025

Unsupervised machine learning for mass spectrometry imaging data analysis with in vivo isotope labeling

Abstract

Mass spectrometry imaging (MSI) has emerged as a powerful tool for spatial metabolomics, but untargeted data analysis has proven to be challenging. When combined with in vivo isotope labeling (MSIi), MSI provides insights into metabolic dynamics with high spatial resolution; however, the data analysis becomes even more complex. Although various tools exist for advanced MSI analyses, machine learning (ML) applications to MSIi have not been explored. In this study, we leverage Cardinal to process MSIi datasets of duckweeds labeled with either 13CO2 or D2O. We apply spatial shrunken centroid (SSC) segmentation, an unsupervised ML algorithm, to differentiate metabolite localizations and investigate isotope labeling of untargeted metabolites. In the SSC segmentation of three-day 13C-labeled duckweed dataset, five spatial segments were identified based on distinct lipid isotopologue distributions, in contrast to classification of only three tissue regions in previous manual analysis based on galactolipid isotopologues. Similarly, SSC segmentation of five-day D-labeled dataset revealed five spatial segments based on distinct metabolite and isotopologue profiles. Further, this untargeted segmentation analysis of MSIi dataset provided insights on tissue-specific relative flux of each metabolite by calculating the fraction of de novo biosynthesis in each segment. Overall, the application of unsupervised machine learning to MSIi datasets has proven to significantly reduce analysis time, increase throughput, and improve the clarity of spatial isotopologue distributions.

Graphical abstract: Unsupervised machine learning for mass spectrometry imaging data analysis with in vivo isotope labeling

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
16 Jun 2025
Accepted
29 Aug 2025
First published
29 Aug 2025
This article is Open Access
Creative Commons BY license

Analyst, 2025,150, 4404-4413

Unsupervised machine learning for mass spectrometry imaging data analysis with in vivo isotope labeling

R. L. B. Johnson, V. T. Tat and Y. J. Lee, Analyst, 2025, 150, 4404 DOI: 10.1039/D5AN00649J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements