Identification of plasticizers using thermal desorption dielectric barrier discharge ionization mass spectrometry

Abstract

Plasticizers, which are extensively utilized in the manufacturing of plastic products, have garnered significant attention due to their potential toxicity and the consequent health and environmental risks they pose. Traditional methods for detecting plasticizers, such as gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS), are often time-consuming and require complex sample preparation. In response to these challenges, this study introduces an innovative approach for the rapid and sensitive identification of seven common plasticizers using thermal desorption dielectric barrier discharge ionization mass spectrometry (TD-DBDI-MS). The proposed technique significantly reduces background interference by employing nitrogen as the discharge gas, thereby enabling the detection of characteristic quasi-molecular ions ([M + H]+) and their fragments, which are crucial for structural elucidation. The method exhibits remarkable sensitivity, with a limit of detection as low as 0.1 ppm for diethyl phthalate and a linear dynamic range of orders of magnitude. Furthermore, it allows for expedited screening of various plastic products, including cling wrap, packaging bags, and centrifuge tubes, with each sample analyzed in less than 30 seconds. This study underscores the efficacy of TD-DBDI-MS as a rapid, sensitive, and user-friendly methodology for the preliminary screening of plasticizers in a wide range of materials.

Graphical abstract: Identification of plasticizers using thermal desorption dielectric barrier discharge ionization mass spectrometry

Article information

Article type
Paper
Submitted
20 Mar 2025
Accepted
07 May 2025
First published
07 May 2025
This article is Open Access
Creative Commons BY-NC license

Analyst, 2025, Advance Article

Identification of plasticizers using thermal desorption dielectric barrier discharge ionization mass spectrometry

Q. Lu, X. Guan, X. You and R. Zenobi, Analyst, 2025, Advance Article , DOI: 10.1039/D5AN00327J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements