Issue 43, 2024

High depolarization temperature and large piezoelectricity in BiScO3–PbTiO3–Bi(Zn1/2Ti1/2)O3 piezoelectric energy harvesting ceramics

Abstract

Piezoceramics with a high depolarization temperature (Td) and excellent piezoelectricity are ideal materials for constructing advanced high-temperature piezoelectric energy harvesters (HT-PEHs). Herein, the Bi(Zn1/2Ti1/2)O3 (BZT) unit with a large tetragonality was added into the BiScO3–PbTiO3 (BS–PT) high-temperature piezoelectric matrix under the guidance of morphotropic phase boundary (MPB) manipulation and a lattice distortion modulation strategy. Based on the dual effects of linear expansion of MPB and the enhancement of lattice tetragonality, the perovskite-type 0.36BS–0.62PT–0.02BZT MPB composition shows a Td of up to 418 °C and a large high-temperature piezoelectric constant (d33) of 932 pC N−1. The above comprehensive high-temperature characteristics are far superior to those of most reported perovskite piezoceramics. Moreover, the HT-PEH assembled using the 0.36BS–0.62PT–0.02BZT MPB ceramic exhibits excellent output power density of 80 μW cm−3 and ability to drive microelectronic devices even at 400 °C. This work demonstrates that the BS–PT–BZT material is a promising candidate for high-temperature piezoelectric energy harvesting applications.

Graphical abstract: High depolarization temperature and large piezoelectricity in BiScO3–PbTiO3–Bi(Zn1/2Ti1/2)O3 piezoelectric energy harvesting ceramics

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
04 Aug 2024
Accepted
21 Sep 2024
First published
30 Sep 2024

J. Mater. Chem. C, 2024,12, 17595-17602

High depolarization temperature and large piezoelectricity in BiScO3–PbTiO3–Bi(Zn1/2Ti1/2)O3 piezoelectric energy harvesting ceramics

H. Wang, X. Yu, M. Zheng, M. Zhu and Y. Hou, J. Mater. Chem. C, 2024, 12, 17595 DOI: 10.1039/D4TC03339F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements