Issue 41, 2024

In search of widening the electrochemical window of solid electrolytes for Li-batteries: the La0.29Li0.12+xM1−xZrxO3 (M = Nb, Ta) perovskite-type systems

Abstract

All solid-state batteries (ASSBs) are required to address challenges of the last generation of Li-batteries such as advances in safety performance, energy density and battery life. Progress of Li-ASSBs requires the development of solid electrolytes with high Li-conductivity and wide electrochemical window. The La(2/3)−xLi3xTiO3 (LLTO) oxides present the highest “bulk” Li-conductivity among the electrolytes with perovskite structure but present significant grain boundary effects that decrease the total conductivity and confer poor electrochemical stability. The oxides of the La(1/3)−xLi3xNbO3 system (LLNO) present slightly lower reduction voltages than the LLTO-oxides and similar values of total conductivity. We have studied the La0.29Li0.12+xNb1−xZrxO3 (LLNZO) and La0.29Li0.12+xTa1−xZrxO3 (LLTaZO) systems with the aim of increasing the Li-conductivity and electrochemical stability of perovskite-based electrolyte oxides. Conductivity values as high as in LLNO are found in the LLNZO system but somewhat lower in the LLTaZO system. However, the electrochemical window of these new solid electrolytes is remarkably wide, in particular in the La0.29Li0.17Ta0.95Zr0.05O3 compound, which is stable between 1.35 and 4.8 V vs. Li+/Li.

Graphical abstract: In search of widening the electrochemical window of solid electrolytes for Li-batteries: the La0.29Li0.12+xM1−xZrxO3 (M = Nb, Ta) perovskite-type systems

Supplementary files

Article information

Article type
Paper
Submitted
31 Jul 2024
Accepted
16 Sep 2024
First published
18 Sep 2024
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2024,12, 28247-28253

In search of widening the electrochemical window of solid electrolytes for Li-batteries: the La0.29Li0.12+xM1−xZrxO3 (M = Nb, Ta) perovskite-type systems

E. García-González, R. Marín-Gamero, M. Kuhn-Gómez, A. Kuhn, F. García-Alvarado and S. García-Martín, J. Mater. Chem. A, 2024, 12, 28247 DOI: 10.1039/D4TA05326E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements