Towards an advanced electrochemical horizon: ion selectivity and energy harnessing through hybrid capacitive deionization with carbon-coated NaTi2(PO4)3 and N-rich carbon nests

Abstract

For both water softening and energy storage, to date, a variety of capacitive devices have been developed; however, their dual functionality has been rarely investigated. An enhanced selective sodium-ion removal along with charge-storage was achieved by combining sodium-ion capture and release through sorption and regeneration steps of a capacitive deionization (CDI) process, respectively. Leveraging their unique and reversible Na+-removal capability, sodium superionic conductors (NASICONs) hold immense promise for hybrid capacitive deionization (HCDI). Despite the great desalination ability of HCDI systems, the unbalanced ion-capture and the possibility of co-ion expulsion have led to a real bottleneck that can effectively be tackled by placing an ion exchange membrane (IEM) between the electrolyte and the electrode. Herein, the state-of-the-art Na+ selective technology has been engineered using well-matched carbon-coated NaTi2(PO4)3 (NTP-C) and N-rich carbon nests (NCNs) as negative and positive electrodes, respectively. The fabricated HCDI cells benefit from a commendable salt adsorption capacity (SAC) of 96.8 mg g−1, a salt adsorption rate (SAR) of 2.42 mg g−1 min−1, and a specific energy consumption (Es) of 18.5 j mgNaCl−1 in the sorption step. These devices also achieve a remarkable energy storage capacity (Q) of 46.52 C g−1 at a low concentration of NaCl (500 ppm) in the regeneration step. The NTP-C//NCN HCDI systems achieved remarkable cycle stability with almost 92.3 and 91.3% retention of their salt adsorption and charge storage capacities, respectively, after 30 continuous cycles. The Na+ selective removal capability of the fabricated HCDI systems was evaluated by comparing their Na+ removal capacity in the absence and presence of Mg2+, Ca2+, and K+ ions (SNa+/X > 2.5) which resulted in a superior sodium removal efficiency (SRE%) of almost over 50% from both pure and contaminated mixtures. As a direct consequence of high charge storage capacity, the fabricated HCDI is well-suited for energy applications, so it marks the beginning of a pioneer horizon towards the commercialization of HCDI technologies.

Graphical abstract: Towards an advanced electrochemical horizon: ion selectivity and energy harnessing through hybrid capacitive deionization with carbon-coated NaTi2(PO4)3 and N-rich carbon nests

Supplementary files

Article information

Article type
Paper
Submitted
25 Jun 2024
Accepted
10 Oct 2024
First published
14 Oct 2024

J. Mater. Chem. A, 2024, Advance Article

Towards an advanced electrochemical horizon: ion selectivity and energy harnessing through hybrid capacitive deionization with carbon-coated NaTi2(PO4)3 and N-rich carbon nests

H. Sharifpour, F. Hekmat, S. Shahrokhian and L. Pan, J. Mater. Chem. A, 2024, Advance Article , DOI: 10.1039/D4TA04413D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements