Issue 45, 2024

Stable and flexible FP-RRAM with an in situ covalently constructed 3D dendritic framework

Abstract

In this study, the stability and flexibility of fiber perovskite resistive random-access memory (FP-RRAM) were optimized via a 3D urea-spherical dendritic framework, which was produced using amino-terminal PAMAM and toluene diisocyanate (TDI). Spherical dendritic PAMAM optimized the perovskite crystallization process in the precursor solution. Next, TDI was added to an anti-solvent to establish the 3D urea-spherical dendritic framework via strong covalent bonds. This covalently connected 3D framework was used as a crystallization template in this work to obtain a more uniform and smoother perovskite morphology. Meanwhile, the urea components protect the surface of the perovskite device, affording better stability and flexibility. When 2 mol L−1 PAMAM in the perovskite precursor solution and 10% TDI in the anti-solvent were applied, the RRAM device modified using the covalently constructed 3D framework (cf-RRAM) achieved optimal resistive switching (RS) performance with an ON/OFF ratio of 108, 500 cycles and a data retention time of 104 s. This optimized RS performance provides the potential to construct a woven and multi-storage device, implying high-density storage. In the exploration of cf-RRAM flexibility, the ON/OFF ratio of the perovskite film was still maintained when the elongation at break reached 28.91% or after bending 400 times at a radius of 5 mm. The loss of RS performance of cf-RRAM devices was less even under frictional conditions. In the exploration of cf-RRAM stability, the devices could withstand a high-temperature environment below 200 °C and maintained good RS performance after 90 day exposure to the ambient environment.

Graphical abstract: Stable and flexible FP-RRAM with an in situ covalently constructed 3D dendritic framework

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
09 Jun 2024
Accepted
23 Oct 2024
First published
23 Oct 2024

J. Mater. Chem. A, 2024,12, 31638-31646

Stable and flexible FP-RRAM with an in situ covalently constructed 3D dendritic framework

M. Liu, X. Ma, Q. Zhao, Z. Li, Y. Liu, S. Xu and S. Cao, J. Mater. Chem. A, 2024, 12, 31638 DOI: 10.1039/D4TA03986F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements