Mixed-valent nonanuclear [MnII5MnIII4] molecular cluster with cubic topology of highest symmetry as bifunctional electrocatalyst for efficient water splitting

Abstract

The development of inexpensive and efficient bifunctional electrocatalysts for water splitting is very important but still a challenging task. In the present research, a mixed-valent molecular cluster, [Mn9L4(μ2-O)4(μ3-Cl)2] (1; 5MnII, 4MnIII) possessing cubic Ia-3d symmetry has been synthesized as an efficient bifunctional water-splitting electrocatalyst for the first time. This synthesis is achieved by adopting a molecular library approach that utilizes an inorganic metal salt, MnCl2·4H2O and a multidentate organic linker, H3L as building blocks (H3L = N,N'-bis[2-carboxybenzomethyl]-N,N'-bis[2-pyridylmethyl]-1,3-diaminopropan-2-ol). The organic linker is so flexible and the inclination towards cubic symmetry is so high that this cluster is readily formed through subcomponent self-assembly. Structural investigation reveals that the metallic hub of 1 consists of a central [MnII(μ2-O)4(μ3-Cl)2] backbone that connects four MnII and four MnIII ions, located at eight vertices of a body-centered cubic (BCC) structure, via the μ2-oxido and μ3-chlorido groups. A total of 24 discrete [Mn9] cluster units are packed together in the unit cell through a number of intramolecular π···π stacking interactions among the adjoining benzoate and pyridyl moieties, forming aesthetically attractive 3D polyhedral topologies with essentially large unit cell dimensions, and cell volume of 113112(9) Å3. When working as both a hydrogen evolution reaction (HER) and an oxygen evolution reaction (OER) catalyst, 1 exhibits excellent activity with overpotential values of 209 mVHER and 410 mVOER to attain a current density of 10 mAcm-2, and the Tafel slopes of 180 mVdec-1HER and 113.54 mVdec-1OER. The chronoamperometric studies reveal the commendable stability of 1, accompanied by minimal degradation of current density which is the key yardstick for HER and OER activities. The mechanistic insight obtained from DFT calculations on the intermediate species show that the MnII-Ooxido-MnIII linkage is the active site for the formation of H2 and O2.

Supplementary files

Article information

Article type
Paper
Submitted
29 Apr 2024
Accepted
23 Jul 2024
First published
23 Jul 2024

J. Mater. Chem. A, 2024, Accepted Manuscript

Mixed-valent nonanuclear [MnII5MnIII4] molecular cluster with cubic topology of highest symmetry as bifunctional electrocatalyst for efficient water splitting

C. Sarkar, T. Sarkar, A. De, N. Dutta, J. Kłak, A. G. Oliver, R. K. Tiwari, J. N. Behera, S. Kundu and M. Bera, J. Mater. Chem. A, 2024, Accepted Manuscript , DOI: 10.1039/D4TA02951H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements