Lateral functionalization of a one-dimensional covalent organic framework for efficient photocatalytic hydrogen evolution from water†
Abstract
Covalent organic frameworks (COFs), a class of porous crystalline organic polymers, have emerged as promising materials for photocatalysis. Structural functionalization of COFs is an effective strategy to improve their photocatalytic performance. However, this approach is mainly limited within interior parts of COFs. Herein we report exterior functionalization of a one-dimensional (1D) COF by introducing terpyridine units on its edges to anchor Pt(II) cations. The as-obtained 1D COF (Pt-Tpy-COF) exhibits high photocatalytic activity for hydrogen evolution from water, with a hydrogen evolution rate up to 7.8 mmol g−1 h−1. Experimental studies and theoretical calculations reveal that the high performance of Pt-Tpy-COF benefits from its distinct 1D framework with readily accessible active sites. This study not only demonstrates the potential of 1D COFs as photocatalysts, but also provides valuable insights for the design and development of highly efficient catalysts for various catalytic applications based on the structural features of this new type of nanoporous crystalline framework materials.