Issue 13, 2024

Extrinsic pseudocapacitive ultrathin 2D MoS2 nanoflakes clamped on 1D Sb2S3 nanorods: an advanced heterostructured anode for high-energy ammonium ion hybrid capacitors

Abstract

Ammonium-ion (NH4+) charge carriers have recently been considered promising for electrochemical energy storage (EES) systems because of their high safety, low molar mass, and small hydrated radius (3.31 Å). However, finding a kinetically balanced anode and cathode combination for high NH4+-ion storage is challenging. Herein, a new approach for developing a heterostructured electrode was developed by constructing extrinsic pseudocapacitive 2D ultrathin MoS2 nanoflakes clamped on 1D Sb2S3 nanorods (MoS2/Sb2S3) as an anode for high-performance ammonium-ion hybrid capacitors (AIHCs) against the intrinsic pseudocapacitive MnO2 cathode. The engineered MoS2/Sb2S3 heterostructured anode facilitated large interlayer galleries owing to the presence of 2D MoS2 for facial NH4+-ion diffusion and provided a rapid electron pathway through 1D Sb2S3, which promoted a high capacitance of 360 F g−1, low resistance, and stable cycling performance. More importantly, the constructed AIHC delivered a superior energy density of 43.75 W h kg−1 at a power density of 600 W kg−1 and excellent cycling durability over 5000 cycles. These results show that a heterostructured extrinsic pseudocapacitive anode can improve the electrochemical parameters of NH4+ EES systems and replace traditional carbon-based anode materials.

Graphical abstract: Extrinsic pseudocapacitive ultrathin 2D MoS2 nanoflakes clamped on 1D Sb2S3 nanorods: an advanced heterostructured anode for high-energy ammonium ion hybrid capacitors

Supplementary files

Article information

Article type
Paper
Submitted
12 Jan 2024
Accepted
13 Feb 2024
First published
13 Feb 2024
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2024,12, 7587-7597

Extrinsic pseudocapacitive ultrathin 2D MoS2 nanoflakes clamped on 1D Sb2S3 nanorods: an advanced heterostructured anode for high-energy ammonium ion hybrid capacitors

S. J. Marje, H. B. Tyagaraj, S. Hwang, K. S. Ranjith, E. Alhajri, N. R. Chodankar, Y. S. Huh and Y. Han, J. Mater. Chem. A, 2024, 12, 7587 DOI: 10.1039/D4TA00262H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements