Issue 10, 2024

Clay mineral-based sustainable snow contaminant remediation technology

Abstract

Seasonal snow covers up to 33% of the Earth's surface. Fresh falling snow serves as a snapshot of atmospheric processes and can take up pollutants. Once deposited, snow can affect the Earth's radiation and climate change, and its melting and accumulation processes can affect human health. Little has been done for snow pollution remediation, especially regarding emerging materials and nano/microplastics in urban regions. We present a sustainable, cost-effective snow remediation filtering system made of multilayer clay-based minerals, specifically kaolin and montmorillonite, capable of removing nano/micro-contaminants from snow. In addition, a recycled metallic mesh with various pore sizes, including nano/micro size, can remove substantial snow contaminants. Using a suite of technologies including high-resolution S/TEM, Pelletier ice nucleation counter, NALDI mass spectrometry, Photoacoustic Extinctiometer (PAX), triple quad ICP-MS/MS, and TOC counter, we found that the clay-mineral setup is highly efficient. For instance, it removes metallic species (>95%), plastic micro/nanoparticles like polyethylene glycol and polyethylene (>99%), black carbon (>93%), and total organic carbon (>50%) from dirty snow sampled in the primary snow depository in downtown Montreal. This sustainable and inexpensive method is promising for significantly reducing the environmental impact of snow pollutants, improving current snow remediation practices in urban areas, decreasing the re-emission of contaminants in air, soil, and water leaching, and improving the ecosystem and human health.

Graphical abstract: Clay mineral-based sustainable snow contaminant remediation technology

Supplementary files

Article information

Article type
Paper
Submitted
03 Apr 2024
Accepted
12 Sep 2024
First published
23 Sep 2024
This article is Open Access
Creative Commons BY-NC license

RSC Sustainability, 2024,2, 3123-3138

Clay mineral-based sustainable snow contaminant remediation technology

B. Mizero, S. Naderi, S. Bose, H. Li and P. A. Ariya, RSC Sustainability, 2024, 2, 3123 DOI: 10.1039/D4SU00155A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements