CoOOH-catalyzed anodic oxidation of 5-(hydroxymethyl)-furfural under non-alkaline conditions†
Abstract
The oxidation of 5-(hydroxymethyl)-furfural (HMF), a platform chemical of biogenic origin, to 2,5-furandicarboxylic acid (FDCA) is a reaction of high relevance for sustainable production of polymers like polyethylene furanoate. However, a majority of the oxidation processes published to date rely on alkaline conditions, in which the instability of HMF and a resource intensive separation of FDCA are major obstacles for technological realization. In this study, we present the electrochemical oxidation of HMF in non-alkaline acetate and phosphate buffers (pH 5–7) on CoOOH modified electrodes. Current-controlled batch experiments were performed, to obtain optimal conditions with respect to the catalyst loading, current density and reaction temperature. Under optimized conditions, a FDCA yield of 94.7% in the acetate buffer (pH 5) was achieved. Through interval sampling, we were able to observe a consecutive oxidation mechanism during the optimized reaction, which mainly proceeded via the intermediate products 2,5-diformylfuran (DFF) and 5-formyl-2-furancarboxylic acid (FFCA). Furthermore, we observed that humic substances formed during the first reaction steps could also be oxidized to FDCA towards the end of the reaction.
 
                




 Please wait while we load your content...
                                            Please wait while we load your content...
                                        
