Issue 39, 2024

Nonylphenol polybenzoxazines-derived nitrogen-rich porous carbon (NRPC)-supported g-C3N4/Fe3O4 nanocomposite for efficient high-performance supercapacitor application

Abstract

In this work, a straightforward and scalable method was used to generate nitrogen-rich porous carbon (NRPC), which was then incorporated with a graphitic carbon nitride and magnetite (g-C3N4/Fe3O4) nanocomposite, fabricated with Fe3O4 nanoparticles as an eco-friendly and economically viable component. The fabricated NRPC/g-C3N4/Fe3O4 nanocomposite was applied as an electrode in supercapacitor applications. The synthesized NRPC/g-C3N4/Fe3O4 nanocomposite, NRPC, g-C3N4, and Fe3O4 were characterized by analytical and morphological analyses. The spherically shaped Fe3O4 nanoparticles were analyzed by field-emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM). The specific surface area of NRPC/g-C3N4/Fe3O4 was determined to be 479 m2 g−1. All the crosslinked composites showed exceptional electrochemical performance and exhibited a pseudo-capacitance behaviour. In comparison to the Fe3O4 and g-C3N4/Fe3O4 electrodes, the NRPC/g-C3N4/Fe3O4 electrode showed a lower charge-transfer resistance and higher capacitance. The prepared NRPC/g-C3N4/Fe3O4 electrode exhibited the highest specific capacitance of 385 F g−1 at 1 A g−1 compared to Fe3O4 (112 F g−1) and g-C3N4/Fe3O4 (150 F g−1). Furthermore, the cycling efficiency of NRPC/g-C3N4/Fe3O4 remained at 94.3% even after 2000 cycles. The introduction of NRPC to g-C3N4/Fe3O4 improved its suitability for application in high-performance supercapacitors.

Graphical abstract: Nonylphenol polybenzoxazines-derived nitrogen-rich porous carbon (NRPC)-supported g-C3N4/Fe3O4 nanocomposite for efficient high-performance supercapacitor application

Supplementary files

Article information

Article type
Paper
Submitted
31 Jul 2024
Accepted
16 Sep 2024
First published
30 Sep 2024

Soft Matter, 2024,20, 7957-7969

Nonylphenol polybenzoxazines-derived nitrogen-rich porous carbon (NRPC)-supported g-C3N4/Fe3O4 nanocomposite for efficient high-performance supercapacitor application

K. Selvaraj, B. Yu, M. E. Spontón, P. Kumar, U. S. Veerasamy, A. Arulraj, R. V. Mangalaraja, Z. M. Almarhoon, S. R. M. Sayed and D. Kannaiyan, Soft Matter, 2024, 20, 7957 DOI: 10.1039/D4SM00920G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements