Issue 27, 2024

Granular aqueous suspensions with controlled interparticular friction and adhesion

Abstract

We present a simple route to obtain large quantities of suspensions of non-Brownian particles with stimuli-responsive surface properties to study the relation between their flow and interparticle interactions. We perform an alkaline hydrolysis reaction on poly(methyl methacrylate) (PMMA) particles to obtain poly(sodium methacrylate) (PMAA–Na) particles. We characterize the quasi-static macroscopic frictional response of their aqueous suspensions using a rotating drum. The suspensions are frictionless when the particles are dispersed in pure water. We relate this state to the presence of electrosteric repulsion between the charged surfaces of the ionized PMAA–Na particles in water. Then we add monovalent and multivalent ions (Na+, Ca2+, La3+) and we observe that the suspensions become frictional whatever the valency. For divalent and trivalent ions, the quasi-static avalanche angle θc at large ionic strength is greater than that of frictional PMMA particles in water, suggesting the presence of adhesion. Finally, a decrease in the pH of the suspending solution leads to a transition between a frictionless plateau and a frictional one. We perform atomic force microscopy (AFM) to relate our macroscopic observations to the surface features of the particles. In particular, we show that the increase in friction in the presence of multivalent ions or under acidic conditions is driven by a nanoscopic phase separation and the bundling of polyelectrolyte chains at the surface of the particle. Our results highlight the importance of surface interactions in the rheology of granular suspensions. Our particles provide a simple, yet flexible platform to study frictional suspension flows.

Graphical abstract: Granular aqueous suspensions with controlled interparticular friction and adhesion

Supplementary files

Article information

Article type
Paper
Submitted
02 Apr 2024
Accepted
13 Jun 2024
First published
24 Jun 2024

Soft Matter, 2024,20, 5447-5455

Granular aqueous suspensions with controlled interparticular friction and adhesion

L. Blaiset, B. Bresson, L. Olanier, É. Guazzelli, M. Roché and N. Sanson, Soft Matter, 2024, 20, 5447 DOI: 10.1039/D4SM00381K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements