Issue 6, 2024

Worm-globule transition of amphiphilic pH-responsive heterografted bottlebrushes at air–water interface

Abstract

Heterografted molecular bottlebrushes (MBBs) with side chains composed of poly(n-butyl acrylate) (PnBA) and pH-responsive poly(2-(N,N-diethylamino)ethyl methacrylate) (PDEAEMA, pKa = 7.4) have been shown to be efficient, robust, and responsive emulsifiers. However, it remains unknown how they respond to external stimuli at interfaces. In this work, the shape-changing behavior of six hetero- and homografted MBBs at air–water interfaces in response to pH changes and lateral compression was investigated using a Langmuir–Blodgett trough and atomic force microscopy. At a surface pressure of 0.5 mN m−1, PDEAEMA-containing MBBs showed no worm-globule transitions when the pH was increased from 4.0 to 10.0, at which PDEAEMA becomes insoluble in water. Upon lateral compression at pH 4.0, MBBs with a mole fraction of PDEAEMA side chains (xPDEAEMA) < 0.50 underwent pronounced worm-globule shape transitions; there was an increasing tendency for bottlebrushes to become connected with increasing xPDEAEMA. At xPDEAEMA = 0.76, the molecules remained wormlike even at high compression. These observations were presumably caused by the increased electrostatic repulsion between protonated PDEAEMA side chains in the subphase with increasing xPDEAEMA, hindering the shape change. At pH 10.0, MBBs with xPDEAEMA < 0.50 showed a lower tendency to change their wormlike morphologies upon compression than at pH 4.0. No shape transition was observed when xPDEAEMA > 0.50, attributed to the relatively high affinity toward water and the rigidity of PDEAEMA. This study revealed the shape-changing behavior of amphiphilic pH-responsive MBBs at air–water interfaces, which could be useful for future design of multicomponent MBBs for potential applications.

Graphical abstract: Worm-globule transition of amphiphilic pH-responsive heterografted bottlebrushes at air–water interface

Supplementary files

Article information

Article type
Paper
Submitted
03 Dec 2023
Accepted
09 Jan 2024
First published
09 Jan 2024

Soft Matter, 2024,20, 1224-1235

Worm-globule transition of amphiphilic pH-responsive heterografted bottlebrushes at air–water interface

M. T. Kelly and B. Zhao, Soft Matter, 2024, 20, 1224 DOI: 10.1039/D3SM01635H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements