Issue 5, 2024

The distinguishable-particle lattice model of glasses in three dimensions

Abstract

The nature of glassy states in realistic finite dimensions is still under fierce debate. Lattice models can offer valuable insights and facilitate deeper theoretical understanding. Recently, a disordered-interacting lattice model with distinguishable particles in two dimensions (2D) has been shown to produce a wide range of dynamical properties of structural glasses, including the slow and heterogeneous characteristics of the glassy dynamics, various fragility behaviors of glasses, and so on. These findings support the usefulness of this model for modeling structural glasses. An important question is whether such properties still hold in the more realistic three dimensions. In this study, we aim to extend the distinguishable-particle lattice model (DPLM) to three dimensions (3D) and explore the corresponding glassy dynamics. Through extensive kinetic Monte Carlo simulations, we found that the 3D DPLM exhibits many typical glassy behaviors, such as plateaus in the mean square displacement of particles and the self-intermediate scattering function, dynamic heterogeneity, variability of glass fragilities, and so on, validating the effectiveness of the DPLM in a broader realistic setting. The observed glassy behaviors of the 3D DPLM appear similar to those of its 2D counterpart, in accordance with recent findings in molecular models of glasses. We further investigate the role of void-induced motions in dynamical relaxations and discuss their relation to dynamic facilitation. As lattice models tend to keep the minimal but important modeling elements, they are typically much more amenable to analysis. Therefore, we envisage that the DPLM will benefit future theoretical developments, such as the configuration tree theory, towards a more comprehensive understanding of structural glasses.

Graphical abstract: The distinguishable-particle lattice model of glasses in three dimensions

Article information

Article type
Paper
Submitted
07 Oct 2023
Accepted
15 Dec 2023
First published
19 Dec 2023

Soft Matter, 2024,20, 1009-1017

The distinguishable-particle lattice model of glasses in three dimensions

B. Li, C. Lee, X. Gao, H. Deng and C. Lam, Soft Matter, 2024, 20, 1009 DOI: 10.1039/D3SM01343J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements