Nitrate sensing with molecular cage ionophores: a potentiometric approach

Abstract

Nitrate ions are widespread environmental pollutants in water and soil, posing critical risks to both human health and ecosystems. This study introduces a molecular cage as a novel ionophore for potentiometric nitrate-selective ion-selective electrodes (ISEs) designed for enhanced specificity and sensitivity. Among six synthetic candidates, the electrode incorporating a 1,3,5-tri(p-hydroxyphenyl)benzene-based chlorotriazine pillared cage molecule (CAGE-1) exhibited superior performance, characterized by a linear response in the nitrate concentration range of 1.0 × 10−5 to 1.0 × 10−1 M, with a high coefficient of determination (R2 = 0.9971) and a slope of −53.1 ± 1.4 mV dec−1. The electrode also achieved a limit of detection of 7.5 × 10−6 M. These findings highlight the potential of molecular cages as ionophores for nitrate sensing in environmental applications.

Graphical abstract: Nitrate sensing with molecular cage ionophores: a potentiometric approach

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
01 Dec 2024
Accepted
07 Feb 2025
First published
17 Feb 2025
This article is Open Access
Creative Commons BY-NC license

Sens. Diagn., 2025, Advance Article

Nitrate sensing with molecular cage ionophores: a potentiometric approach

A. Onder, F. Begar, E. Kibris, O. Buyukcakir and U. H. Yildiz, Sens. Diagn., 2025, Advance Article , DOI: 10.1039/D4SD00359D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements