Issue 45, 2024

Photovoltaic-driven stable electrosynthesis of H2O2 in simulated seawater and its disinfection application

Abstract

Electrosynthesis of H2O2 through O2 reduction in seawater provides bright sight on the H2O2 industry, which is a prospective alternative to the intensively constructed anthraquinone process. In this work, a photovoltaic-driven flow cell system is built for the electrosynthesis of H2O2 in simulated seawater using N-doped carbon catalysts. The N-doped carbon catalysts with multiple N-doped carbon defects can achieve a record-high H2O2 production rate of 34.7 mol gcatalyst−1 h−1 under an industrially relevant current density of 500 mA cm−2 and a long-term stability over 200 h in simulated seawater (0.5 M NaCl). When driven by the photovoltaic system, a H2O2 solution of ∼1.0 wt% in 0.5 M NaCl is also obtained at about 700 mA cm−2. The obtained solution is applied for disinfection of mouse wounds, with a removal rate of 100% for Escherichia coli and negligible toxicity to living organisms. It provides bright prospects for large-scale on-site H2O2 production and on-demand disinfection.

Graphical abstract: Photovoltaic-driven stable electrosynthesis of H2O2 in simulated seawater and its disinfection application

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
03 Sep 2024
Accepted
07 Oct 2024
First published
11 Oct 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 18969-18976

Photovoltaic-driven stable electrosynthesis of H2O2 in simulated seawater and its disinfection application

Y. Wen, Y. Feng, J. Wei, T. Zhang, C. Cai, J. Sun, X. Qian and Y. Zhao, Chem. Sci., 2024, 15, 18969 DOI: 10.1039/D4SC05909C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements