Oxygen-bridged W-Pd atomic pairs enable H2O2 activation for sensitive immunoassays†
Abstract
Regulating the performance of peroxidase (POD)-like nanozymes is a prerequisite for achieving highly sensitive and accurate immunoassays. Inspired by natural enzyme catalysis, we design a highly active and selective nanozyme by loading atomically dispersed tungsten (W) sites on Pd metallene (W-O-Pdene) to construct an artificial three-dimensional (3D) catalytic center. The 3D asymmetric W-O-Pd atomic pairs can effectively stretch the O–O bonds in H2O2 and further promote the desorption of H2O to enhance POD-like activity. Moreover, the W-O-Pd sites with unique spatial structures demonstrate satisfactory specificity for H2O2 activation, effectively preventing the interference of dissolved oxygen. Accordingly, the highly active and specific W-O-Pdene nanozymes are utilized for sensitive and accurate prostate-specific antigen (PSA) immunoassay with a low detection limit of 1.92 pg mL−1, superior to commercial enzyme-linked immunosorbent assay.