Streamlined synthetic assembly of α-chiral CAAC ligands and catalytic performance of their copper and ruthenium complexes†
Abstract
The unique electronic and steric parameters of chiral cyclic alkyl amino carbene (CAAC) ligands render them appealing steering ligands for enantioselective transition-metal catalyzed transformations. Due to the lack of efficient synthetic strategies to access particularly attractive α-chiral CAACs assessment and exploitation of their full synthetic potential remain difficult. Herein, we report a streamlined strategy to assemble a library of diastereo- and enantiomerically pure CAAC ligands featuring the notoriously difficult to access α-quaternary stereogenic centers. A tailored Julia–Kocienski olefination reagent allows the Claisen-rearrangement to be leveraged as an expedient route to form the synthetically pivotal racemic α-chiral methallyl aldehydes. Subsequent condensation with chiral amines and further cyclization provided a library of diastereomeric mixtures of the targeted ligand precursors. The CAAC salts as well as their corresponding metal complexes are conveniently separable by standard silica gel flash chromatography closing a long-standing accessibility gap in chiral CAAC ligands with proximal α-chirality. The rapid availability of both diastereomers enables testing of the relevance and synergistic effects of two chiral centers on the ligand in catalytic applications. A broad range of metal complexes with copper, gold, rhodium and ruthenium were obtained and structurally analyzed. The catalytic performances of the corresponding chiral CAAC copper and ruthenium complexes were assessed in enantioselective conjugate borylations and asymmetric ring closing metathesis, displaying selectivities of up 95 : 5 er.