High density information storage through isotope ratio encoding†
Abstract
The need for reliable information storage is on a steep rise. Sequence-defined polymers, particularly oligonucleotides, are already in use in several areas, while compound mixtures also offer a simple way for storing information. We investigated the use of a set of isotopologues in information storage by mixing, where the information is stored in the form of a mass spectrometric (MS) fingerprint of the mixture. A small molecule with 24 non-labile and replaceable hydrogen atoms was selected as a model, and a set of components covering the D0–D24 deuteration range were synthesized. Theoretical analysis predicted that by mixing up to 10 out of the prepared components, one can encode over 130 million different combinations and distinguish their MS fingerprints. As a proof of principle, several mixtures predicted to have similar fingerprints were prepared and their MS fingerprints were recorded. From each measured MS fingerprint, we were able to unambiguously identify the actual composition of the mixture. It was also demonstrated that one can make the MS fingerprints of a given mixture unique, thereby making counterfeiting of the stored information very difficult. Finally, the utility of isotope ratio encoding in covalent tagging was also demonstrated.