Issue 28, 2024

Self-assembly-integrated tumor targeting and electron transfer programming towards boosting tumor type I photodynamic therapy

Abstract

Type I photodynamic therapy (PDT) is attracting increasing interest as an effective solution to the poor prognosis of patients with hypoxic tumors. The development of functional type I photosensitizers is limited by a lack of feasible strategies to systematically modulate electron transfer (ET) in photosensitization. Herein, we present an easily accessible approach for the preparation of nanophotosensitizers with self-assembly-integrated tumor-targeting and ET programming towards boosting tumor type I PDT. Specifically, a dual functional amphiphile PS-02 was designed with a ligand (6-NS) that had the ability to not only target tumor cell marker carbonic anhydrase IX (CAIX) but also regulate the ET process for type I PDT. The amphiphile PS-02 tended to self-assemble into PS-02 nanoparticles (NPs), which exhibited a local “ET-cage effect” due to the electron-deficient nature of 6-NS. It is noteworthy that when PS-02 NPs selectively targeted the tumor cells, the CAIX binding enabled the uncaging of the inhibited ET process owing to the electron-rich characteristic of CAIX. Therefore, PS-02 NPs integrated tumor targeting and CAIX activation towards boosting type I PDT. As a proof of concept, the improved PDT performance of PS-02 NPs was demonstrated with tumor cells under hypoxic conditions and solid tumor tissue in mouse in vivo experiments. This work provides a practical paradigm to develop versatile type I PDT nano-photosensitizers by simply manipulating ET and easy self-assembling.

Graphical abstract: Self-assembly-integrated tumor targeting and electron transfer programming towards boosting tumor type I photodynamic therapy

Supplementary files

Article information

Article type
Edge Article
Submitted
07 May 2024
Accepted
05 Jun 2024
First published
18 Jun 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 10945-10953

Self-assembly-integrated tumor targeting and electron transfer programming towards boosting tumor type I photodynamic therapy

W. Chen, Z. Wang, G. Hong, J. Du, F. Song and X. Peng, Chem. Sci., 2024, 15, 10945 DOI: 10.1039/D4SC03008G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements