Issue 21, 2024

A highly efficient catalytic method for the synthesis of phosphite diesters

Abstract

In contrast to conventional methods that rely on stoichiometric activation of phosphonylating reagents, we have developed a highly efficient catalytic method for the synthesis of phosphite diesters using a readily available phosphonylation reagent and alcohols with environmentally benign Zn(II) catalysts. Two alcohols could be introduced consecutively on the P center with release of trifluoroethanol as the sole byproduct, without any additive, under mild conditions. The products could be oxidized smoothly to access phosphate triesters. A range of alcohols, including sterically demanding and highly functionalized alcohols such as carbohydrates and nucleosides, can be applied in this reaction.

Graphical abstract: A highly efficient catalytic method for the synthesis of phosphite diesters

Supplementary files

Article information

Article type
Edge Article
Submitted
28 Feb 2024
Accepted
10 Apr 2024
First published
17 Apr 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2024,15, 8190-8196

A highly efficient catalytic method for the synthesis of phosphite diesters

Y. Saito, S. M. Cho, L. A. Danieli, A. Matsunaga and S. Kobayashi, Chem. Sci., 2024, 15, 8190 DOI: 10.1039/D4SC01401D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements