Issue 8, 2024

Probing the evaporation dynamics of semi-volatile organic compounds to reveal the thermodynamics of liquid–liquid phase separated aerosol

Abstract

Liquid–liquid phase separation (LLPS) is a thermodynamically driven process that occurs in mixtures of low miscibility material. LLPS is an important process in chemical, biological, and environmental systems. In atmospheric chemistry, LLPS in aerosol containing internally-mixed organic and inorganic particles has been an area of significant interest, with particles separating to form organic-rich and aqueous phases on dehydration. This alters the optical properties of the particles, has been connected to changes in the cloud nucleation ability of the aerosol, and potentially changes the reactivity of particles towards gas-phase oxidants. Although the chemical systems that undergo LLPS have become quite well-characterized, the properties and processes of LLPS particles are quite poorly understood. In this work, we characterize LLPS in aerosol particles containing ammonium sulfate and triethylene glycol (3EG), a semi-volatile organic molecule. We explore the relative humidity (RH) conditions under which LLPS occurs and characterize the rate of evaporation of 3EG from well-mixed and LLPS particles as a function of RH. We show that the evaporation rates vary with RH due to changes in chemical activity, however no clear change in the dynamics following LLPS are observed. We interpret our observations using a thermodynamic model (AIOMFAC) coupled with an evaporation model and show that a significant increase in the activity coefficient of 3EG as the RH decreases, required for LLPS to occur, obscures a clear step-change in the evaporation rates following LLPS. By characterizing the evaporation rates, we estimate the composition of the organic-rich phase and compare our results to thermodynamic predictions. This study is the first to explore the connection between LLPS and the chemical evolution of aerosol particles via the evaporation of semi-volatile organic material. Ultimately, we reveal that the thermodynamics of non-ideal mixing are primarily responsible for the controlling both the rate of evaporation and the onset of LLPS, with LLPS itself having limited impact on the rate of evaporation in a fluid system. These results have significant implications for understanding and predicting the lifetime of aerosol particles, their effect on cloud formation, and the chemical evolution of multiphase systems by particle-gas partitioning and heterogeneous reactions.

Graphical abstract: Probing the evaporation dynamics of semi-volatile organic compounds to reveal the thermodynamics of liquid–liquid phase separated aerosol

Supplementary files

Article information

Article type
Edge Article
Submitted
30 Sep 2023
Accepted
16 Jan 2024
First published
17 Jan 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2024,15, 2963-2974

Probing the evaporation dynamics of semi-volatile organic compounds to reveal the thermodynamics of liquid–liquid phase separated aerosol

J. M. Choczynski, B. Shokoor, J. Salazar, A. Zuend and J. F. Davies, Chem. Sci., 2024, 15, 2963 DOI: 10.1039/D3SC05164A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements