Development of an automated platform for monitoring microfluidic reactors through multi-reactor integration and online (chip-)LC/MS-detection†‡
Abstract
This work presents a novel microfluidic screening setup with real-time analytics for investigating reactions with immobilised biocatalysts. The setup combines microreactor technology, multi-reactor integration, and online (chip-)LC/MS analysis in a sequential automated workflow. We utilized in-house manufactured fused-silica glass chips as reusable packed-bed microreactors interconnected as individual tube reactors. The potential of this setup was showcased by conducting and optimising a biocatalytic aromatic bromination reaction as the first proof of concept using immobilised vanadium-dependent haloperoxidase from Curvularia inaequalis (CiVHPO). The fusion of a HaloTag™ to CiVHPO was used for efficient and mild covalent linkage of the enzyme onto chloroalkane-functionalized particles. Then, the biotransformation was continuously monitored with automated LC/MS data acquisition in a data-rich manner. By further developing the automation principle, it was possible to sequentially screen multiple different connected packed-bed microreactors for reaction optimization while using only miniature amounts of reactants and biocatalyst. Finally, we present a fast and modular chipHPLC solution for online analysis to reduce the overall solvent consumption by over 80%. We established a modern microfluidic platform for real-time reaction monitoring and evaluation of biocatalytic reactions through automation of the reactant feed integration, flexible microreactor selection, and online LC/MS analysis.