Issue 19, 2024, Issue in Progress

Superhydrophobic foam combined with biomass-derived TENG based on upcycled coconut husk for efficient oil–water separation

Abstract

The ocean ecological environments are seriously affected by oil spilling and plastic-debris, preventing and significantly reducing marine pollution via using biocomposite production from natural fiber reinforcement is a more friendly way to deal with marine oil pollution. Herein, we upcycled coir-coconut into lignin and coconut shell into spherical TENG by a combination of dip-dry and chemical treatment and used the SiO2 nanoparticles together with cellulose nanofibrils to prepare serial sugar-templated, anisotropic and hybrid foams. The as-prepared lignin/SiO2 porous sponge (LSPS) with a hierarchical porous morphology and uniformly dispersed nanoparticles structure benefits from the advantages of biomass-based additives, which presents reversible large-strain deformation (50%) and high compressive strength (11.42 kpa). Notably, the LSPS was significantly more hydrophobic (WCA ≈150°) than pure silicone-based foams, and its selective absorbability can separate oil from water under continuous pumping. Meanwhile, the coconut husk was also upcycled as a spherical TENG shell by a combination of the nanofiber-enhanced polymer spherical oscillator (CESO), which possessed high triboelectric properties (Uoc = 272 V, Isc = 14.5 μA, Q = 70 nC) and was comparable to the plastic shell TENG at low frequency (1.6 Hz). The monolithic foam structure developed using this clean synthetic strategy holds considerable promise for new applications in sustainable petroleum contamination remediation.

Graphical abstract: Superhydrophobic foam combined with biomass-derived TENG based on upcycled coconut husk for efficient oil–water separation

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
10 Mar 2024
Accepted
13 Apr 2024
First published
22 Apr 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 13005-13015

Superhydrophobic foam combined with biomass-derived TENG based on upcycled coconut husk for efficient oil–water separation

J. Liang, Y. Zhou, Q. Wu, Z. Zhu, K. Lin, J. He, H. Hong and Y. Luo, RSC Adv., 2024, 14, 13005 DOI: 10.1039/D4RA01841A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements