The increasing demands for battery performance in the new era of energy necessitate urgent research and development of an energy storage battery that offers high stability and a long service life. Among the various types of batteries available, the all-solid lithium battery emerges as the preferred choice because of its exceptional safety, stability, and sustainability features. The solid electrolyte plays a crucial role in facilitating efficient energy transmission within the structure of the lithium battery. Solid electrolytes based on polymer chemistry can be classified into different categories, such as ether-based, ester-based, nitrile-based, and polyvinylidene fluoride materials. This discussion also covers topics such as ion transport mechanisms, levels of ionic conductivity, techniques for modification, and analysis of cyclic stability specifically for lithium-ion batteries utilizing solid electrolytes. Finally, an outlook on the future research direction of solid-state polymer electrolytes is suggested for commercially large-scale production and application.