Issue 4, 2024

Cancer immunotherapy boosted by layered double hydroxide nanoparticles

Abstract

The development of innovative nanoplatforms for cancer immunotherapy has garnered considerable attention in biomedical research. Layered double hydroxide (LDH) is a two-dimensional inorganic nanomaterial consisting of positively charged brucite-like cationic layers and negatively charged anions intercalated in the interlayer space. LDH-based nanoplatforms have been emerging as promising candidates for enhancing the efficacy of cancer immunotherapy. This review highlights the latest advancements in the application of LDH in cancer immunotherapy. The unique physicochemical properties of LDH, such as a high surface area, tunable porosity, and facile surface modification, entail it to be a versatile platform to deliver antigens, drugs, and other therapeutic agents. In addition, LDH's inherent biocompatibility and biodegradability contribute to its suitability for in vivo applications. Moreover, the nanoplatform formed by the integration of self-adjuvant LDH with tumor antigen and immunomodulatory components has shown promising results in enhancing antigen presentation, promoting immune cell activation and regulating the immune suppressive tumor microenvironment. In this review, we discuss the application of LDH as a carrier-supported immune modulator in immunotherapy and the application of LDH as an adjuvant to construct tumor vaccines. Finally, future research challenges of LDH in immunotherapy are briefly discussed. Conclusively, the versatility and adaptability of LDH-based nanoplatforms make them promising candidates for the next generation of cancer immunotherapeutics.

Graphical abstract: Cancer immunotherapy boosted by layered double hydroxide nanoparticles

Article information

Article type
Review Article
Submitted
14 Jun 2024
Accepted
14 Aug 2024
First published
14 Aug 2024
This article is Open Access
Creative Commons BY-NC license

RSC Pharm., 2024,1, 608-621

Cancer immunotherapy boosted by layered double hydroxide nanoparticles

X. Deng, G. Li, M. Shen and X. Shi, RSC Pharm., 2024, 1, 608 DOI: 10.1039/D4PM00179F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements