Acid- and base-resistant antimicrobial hydrogels based on polyoxometalates and chitosan

Abstract

Invasive fungal infections kill more than 1.7 million and affect over a billion people each year; however, their devastating impact on human health is not widely appreciated and frequently neglected by public health authorities. In 2022, the WHO highlighted the urgent need for efficient diagnostic tests as well as safe and effective new compounds, drugs, and vaccines. Our hypothesis was that the naturally occurring polymer chitosan (CS) could be combined with molecular polyoxometalates (POMs) to produce POM@CS hybrid materials to promote broad-spectrum activity and habilitate synergic effects, which will ultimately help to prevent the appearance of resistances. Here we report the synthesis, characterisation, and antimicrobial activity of POM@CS hydrogels. Spectroscopic (FT-IR & EDS) and electron microscopy (SEM & TEM) techniques revealed the structural composition and morphology of the hybrid materials, whilst dynamic mechanical analysis demonstrated that the mechanical properties of the hydrogels were stable between pH 2 and 10 and were highly resistant to acidic conditions. The POM@CS hydrogels were active against Gram-positive Bacillus subtilis and Gram-negative Escherichia coli bacteria, and proved to completely reduce fungal growth of Aspergillus niger and Cladosporium cladosporioides. Furthermore, the antimicrobial activity of the hydrogels could be enhanced through the inclusion of naturally occurring antimicrobial agents such as eugenol and cinnamaldehyde. Altogether, the development of such surface-active antimicrobial hydrogels pave the way to functional materials that can prevent biofilm formation in health and environmental applications and contribute to reducing the spread of antimicrobial resistance.

Graphical abstract: Acid- and base-resistant antimicrobial hydrogels based on polyoxometalates and chitosan

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
29 Feb 2024
Accepted
16 May 2024
First published
17 May 2024
This article is Open Access
Creative Commons BY-NC license

RSC Pharm., 2024, Advance Article

Acid- and base-resistant antimicrobial hydrogels based on polyoxometalates and chitosan

C. McWilliams, I. Franco-Castillo, A. Seral Ascaso, S. García-Embid, M. Malefioudaki, J. G. Meier, R. Martín-Rapún and S. G. Mitchell, RSC Pharm., 2024, Advance Article , DOI: 10.1039/D4PM00062E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements