Issue 2, 2024

Exploring the molecular structure of lipids in the design of artificial lipidated antifungal proteins

Abstract

Fungal infections have been a concern for decades, yet effective and approved antifungal agents are limited. We recently developed a potential method to enhance the antifungal activity of a small chitin-binding domain (LysM) from Pteris ryukyuensis chitinase A (PrChiA) by the site-specific introduction of a palmitoyl (C16) group catalyzed by microbial transglutaminase (MTG). Herein, we attempted the conjugation of a series of lipid–peptide substrates with LysM genetically fused with a C-terminal MTG-reactive Q-tag (LysM-Q) to yield LysM-lipid conjugates (LysM-lipids) with different lengths (LysM-C12, -C14, and -C16) and different numbers of alkyl chains [LysM-(C12)2, -(C14)2, and -(C16)2]. The enzymatic conjugation proceeded smoothly for all LysM-lipids, except for LysM-(C16)2 because of the low aqueous dispersibility of the hydrophobic (C16)2 lipid–peptide substrate. The combination of amphotericin B (AmB) with LysM-C14 or LysM-C16 exhibited the highest antifungal performance against Trichoderma viride whereas alterations in the number of alkyl chains were not effective in enhancing the antifungal activity of the LysM-lipids. Fluorescent microscopic analysis showed that the fungal cell wall was stained with C14- and C16-modified LysM-muGFP fusion proteins when combined with AmB, suggesting a suitable lipid length to enhance the antifungal action. All LysM-lipids showed minimum cytotoxicity toward mammalian cells, suggesting that LysM-lipids could be a safe additive in the development of new antifungal formulations.

Graphical abstract: Exploring the molecular structure of lipids in the design of artificial lipidated antifungal proteins

Supplementary files

Article information

Article type
Paper
Submitted
22 Dec 2023
Accepted
22 May 2024
First published
24 May 2024
This article is Open Access
Creative Commons BY-NC license

RSC Pharm., 2024,1, 372-378

Exploring the molecular structure of lipids in the design of artificial lipidated antifungal proteins

H. Saputra, M. Safaat, K. Uchida, P. Santoso, R. Wakabayashi, M. Goto, T. Taira and N. Kamiya, RSC Pharm., 2024, 1, 372 DOI: 10.1039/D3PM00087G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements