Recent advances in the synthetic applications of nitrosoarene chemistry
Abstract
Nitroso groups are widely present in biologically active compounds in medicinal chemistry, and nitroso compounds serve as important building blocks in organic chemistry and materials science. Nitrosoarenes, in particular, showcase remarkable versatility, functioning as both electrophilic and nucleophilic reagents in a broad spectrum of organic reactions, thereby holding significant relevance in organic chemistry. This review aims to provide a comprehensive overview of the latest advancements in nitrosoarene reactions spanning a decade. Special attention is given to the synthesis of products derived from nitrosoarenes and the conditions that promote these reactions, as well as the type of catalysts. The exploration covers various facets of nitrosoarene chemistry, including cyclization, reactions involving attacks at the oxygen or nitrogen terminus, dimerization, rearrangement, coordination, and other significant reactions. By delving into these diverse reaction pathways and mechanisms, this review aspires to serve as a valuable resource for researchers seeking to deepen their understanding of nitrosoarene chemistry and its applications in both fundamental and applied scientific research.