Issue 28, 2024

Modular synthesis of pyrrole-fused heterocycles via glucose-mediated nitro-reductive cyclization

Abstract

A novel biomass-derived glucose-mediated one-pot multicomponent nitro-reductive cyclization method is presented for the direct synthesis of diverse pyrrole-fused heterocycles. The process involves two-component reactions of alkyl (NH)-pyrrole-2-carboxylates and 2-fluoronitroarenes, yielding pyrrolo[1,2-a]quinoxalin-4(5H)-ones, as well as three-component reactions utilizing (NH)-pyrroles, nitroarenes, and DMSO as carbon sources, resulting in various pyrrolo[1,2-a]quinoxaline derivatives. High yields were achieved with broad substrate scope and gram-scale synthesis capability, including pharmaceuticals featuring pyrroloquinoxaline scaffolds. The method's key innovation lies in enabling three or four reactions in a single-pot setup, previously unexplored in pyrrole chemistry. The simplicity of nitro group reduction by biomass-derived glucose ensures practical safety during scale-up, while mechanistic insights from control experiments reveal a new paradigm in pyrrole chemistry. The tandem process demonstrates low PMI values and high step and atom economies, aligning well with green chemistry principles.

Graphical abstract: Modular synthesis of pyrrole-fused heterocycles via glucose-mediated nitro-reductive cyclization

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
08 May 2024
Accepted
12 Jun 2024
First published
28 Jun 2024

Org. Biomol. Chem., 2024,22, 5790-5796

Modular synthesis of pyrrole-fused heterocycles via glucose-mediated nitro-reductive cyclization

S. Panday, A. Hazra, P. Gupta, S. Manna and J. K. Laha, Org. Biomol. Chem., 2024, 22, 5790 DOI: 10.1039/D4OB00741G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements