Issue 29, 2024

Synthesis of fluorinated curcumin derivatives for detecting amyloid plaques by 19F-MRI

Abstract

The most prominent pathophysiological hallmark of Alzheimer's disease is the aggregation of amyloid-β (Aβ) peptides into senile plaques. Curcumin and its derivatives exhibit a high affinity for binding to Aβ fibrils, effectively inhibiting their growth. This property holds promise for both therapeutic applications and diagnostic molecular imaging. In this study, curcumin was functionalized with perfluoro-tert-butyl groups to create candidate molecular probes specifically targeted to Aβ fibrils for use in 19F-magnetic resonance imaging. Two types of fluorinated derivatives were considered: mono-substituted (containing nine fluorine atoms per molecule) and disubstituted (containing eighteen fluorine atoms). The linker connecting the perfluoro moiety with the curcumin scaffold was evaluated for its impact on binding affinity and water solubility. All mono-substituted compounds and one disubstituted compound exhibited a binding affinity toward Aβ fibrils on the same order of magnitude as reference curcumin. The insertion of a charged carboxylate group into the linker enhanced the water solubility of the probes. Compound Curc-Glu-F9 (with one L-glutamyl moiety and a perfluoro-tert-butyl group), showed the best properties in terms of binding affinity towards Aβ fibrils, water solubility, and intensity of the 19F-NMR signal in the Aβ oligomer bound form.

Graphical abstract: Synthesis of fluorinated curcumin derivatives for detecting amyloid plaques by 19F-MRI

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
06 May 2024
Accepted
02 Jul 2024
First published
03 Jul 2024
This article is Open Access
Creative Commons BY-NC license

Org. Biomol. Chem., 2024,22, 5948-5959

Synthesis of fluorinated curcumin derivatives for detecting amyloid plaques by 19F-MRI

S. Micocci, R. Stefania, F. Garello, U. Fasoglio, I. Hawala, L. Tei, S. Geninatti Crich and G. Digilio, Org. Biomol. Chem., 2024, 22, 5948 DOI: 10.1039/D4OB00730A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements