2D petal-like PdAg nanosheets promote efficient electrocatalytic oxidation of ethanol and methanol†
Abstract
The development of efficient alcohol electrooxidation catalysts is of vital importance for the commercialization of direct liquid fuel cells. As emerging advanced catalysts, two-dimensional (2D) noble metal nanomaterials have attracted much research attention due to their intrinsic structural advantages. Herein, we report the synthesis of petal-like PdAg nanosheets (NSs) with an ultrathin 2D structure and jagged edges via a facile wet-chemical approach, combining doping engineering and morphology tuning. Notably, the highly active sites and Pd–Ag composition endowed PdAg NSs with improved toxicity tolerance and substantially improved the durability toward the ethanol/methanol oxidation reaction (EOR/MOR). Moreover, the electronic effect and synergistic effect significantly enhanced the EOR and MOR activities in comparison with Pd NSs and commercial Pd/C. This work provides efficient catalysts for fuel electrooxidations and deep insight into the rational design and fabrication of novel 2D nanoarchitecture.