Synthesis and characterization of MoSe2 nanoscrolls via pulsed laser ablation in deep eutectic solvents

Abstract

There is ongoing interest in the rapid, reproducible production of 2-dimensional (2-D) transition metal dichalcogenides (TMD), such as molybdenum-based TMD (MoX2), where X is a chalcogen atom such as sulphur (S), selenium (Se) or tellurium (Te), driven by their unique optical and electronic properties. Once fabricated into an atomically thin layer structure, these materials have a direct-indirect bandgap transition, strong spin–orbit coupling, and favourable electronic and mechanical strain-dependent properties which are attractive for electronics. Pulsed laser ablation in liquid (PLAL) is an economic, green alternative for synthesis of TMD. It has been shown that in the case of MoX2, the chemical processes during the plasma phase of the ablation can yield the formation of multispecies, including MoOx quantum dots when oxygen-containing solvents are used. Here, we introduce the formation of MoSe2 nanoscrolls with low oxygen content synthesized via pulsed laser ablation in deep eutectic solvents (PLADES). Our results suggest that the synthesis produces a stable colloidal solution of large 2-D structures with tuneable surface charge by replacing the deep eutectic solvent (DES) with DI water. Nuclear Magnetic Resonance (NMR) results suggest that irradiating the solvent at near infrared NIR energy does not affect its chemical composition. NMR also proves that serial washing can completely remove solvent from the nanostructures. Raman shifts suggest the formation of large, thin MoSe2 nanosheets aided by the solvent confinement resulting from van der Waal forces and hydrogen bonds interactions between MoSe2 and urea. Binding energies measured by X-ray photoelectron spectroscopy (XPS) confirm MoSe2-DES preference to form 1T-MoSe2 versus molybdenum oxides and 2H MoSe2 in DI-water. Raman and XPS findings were validated by transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Results of this work validate the use of PLADES for the synthesis of stable, crystalline, low-surface-oxygen-content colloidal MoSe2 nanoscrolls in scalable quantities.

Graphical abstract: Synthesis and characterization of MoSe2 nanoscrolls via pulsed laser ablation in deep eutectic solvents

Supplementary files

Article information

Article type
Paper
Submitted
03 Apr 2024
Accepted
27 May 2024
First published
28 May 2024

Nanoscale, 2024, Advance Article

Synthesis and characterization of MoSe2 nanoscrolls via pulsed laser ablation in deep eutectic solvents

A. L. Morales Betancourt, S. Shaji, E. Flores and K. L. Nash, Nanoscale, 2024, Advance Article , DOI: 10.1039/D4NR01466A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements