CBe4H6: a molecular rotor with a built-in on–off switch†
Abstract
It is highly challenging to control (stop and resume as needed) molecular rotors because their intramolecular rotations are electronically enabled by delocalized σ bonding, and the desired control needs to be able to destroy and restore such σ bonding, which usually means difficult chemical manipulation (substitution or doping atom). In this work, we report CBe4H6, a molecular rotor that can be controlled independently of chemical manipulation. This molecule exhibited the uninterrupted free rotation of Be and H atoms around the central carbon in first-principles molecular dynamics simulations at high temperatures (600 and 1000 K), but the rotation cannot be witnessed in the simulation at room temperature (298 K). Specifically, when a C–H bond in the CBe4H6 molecule adopts the equatorial configuration at 298 K, it destroys the central delocalized σ bonding and blocks the intramolecular rotation (the rotor is turned “OFF”); when it can adopt the axial configuration at 600 and 1000 K, the central delocalized σ bonding can be restored and the intramolecular rotation can be resumed (the rotor is turned “ON”). Neutral CBe4H6 is thermodynamically favorable and electronically stable, as reflected by a wide HOMO–LUMO gap of 7.99 eV, a high vertical detachment energy of 9.79 eV, and a positive electron affinity of 0.24 eV, so it may be stable enough for the synthesis, not only in the gas phase, but also in the condensed phase.